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Abstract. Electroencephalography (EEG) recorded from multiple
channels is typically used in many non-invasive brain computer interfaces
(BCIs) for inference. Usually, EEG is assumed to be a Gaussian process
with unknown mean and covariance, and the estimation of these parame-
ters are required for BCI inference. However, relatively high dimensional-
ity of the feature vectors extracted from the recorded EEG with respect
to the number of supervised observations usually leads to a rank deficient
covariance matrix estimator. In our typing BCI, RSVP KeyboardTM, we
solve this problem by applying regularization on the maximum likelihood
covariance matrix estimators. Alternatively, in this manuscript we pro-
pose a Kronecker product structure for covariance matrices. Our under-
lying hypothesis is that the a structure imposed on the covariance matri-
ces will improve the estimation accuracy and accordingly will result in
typing performance improvements. Through an offline analysis we assess
the classification accuracy of the proposed model. The results represent a
significant improvement in classification accuracy compared to an RDA
approach which does not assume any structure on the covariance.

Keywords: Structured covariances kronecker · Brain-Computer Inter-
face (BCI) · Spatial temporal discriminant analysis · Event-Related
Potential (ERP) · Multichannel Electroencephalogram (EEG)

1 Introduction

Non-invasive electroencephalography (EEG) based brain computer interfaces
(BCIs) are designed as assistive technologies for people with severe speech and
muscle impairments providing means for them to communicate with their care-
takers and families [2]. Event relate potentials (ERPs) are commonly employed
by the EEG-based BCIs to detect the user intend [1–3,5,7]. Donchin and Farewell
demonstrated that ERPs can be used to design a letter by letter typing BCI [3].
The matrix based presentation paradigm used in their design is shown to be
highly gaze dependent [10]. On the other hand, rapid serial visual presentation
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(RSVP) paradigm is a gaze-independent alternative for matrix presentation par-
adigms. In RSVP, the symbols are rapidly presented as a time series on a prefixed
location on the screen in a pseudo-random order [1,5,7].

RSVP KeyboardTM is a non-invasive EEG-based language-model-assisted
BCI for typing which utilizes ERPs for intent detection. Inference module of
the RSVP KeyboardTM probabilistically fuses the evidence extracted from the
recorded multiple EEG channels with the probabilistic context information pro-
vided by a 6-gram language model [5–7]. This BCI system currently can employ
both matrix-based presentation and RSVP paradigms. The EEG evidence is
extracted using regularized discriminant analysis (RDA [6,7]). RDA is a gener-
alization of the quadratic discriminant analysis (QDA) which applies regulariza-
tion and shrinkage on the maximum likelihood class covariance matrix estimators
to remedy rank deficiencies [4]. RSVP KeyboardTM utilizes RDA because the
dimensionality of the extracted EEG feature vectors is relatively higher than the
number of measurements collected for supervised learning.

Alternative to the RDA method, in this manuscript, we propose a Kronecker
product structure for the covariance matrices. We show that modeling multichan-
nel EEG using an auto-regressive moving average (ARMA) model under certain
assumptions leads to a covariance matrix with a Kronecker product structure.
In this structure the number of parameters is significantly lower than RDA. The
maximum likelihood estimation of the proposed parametric model of covariance
matrix along with regularization lead to significant improvement in classifica-
tion performance. Our offline analysis shows that the median of the percentage
of improvement for different subjects across different presentation paradigms is
1.111 %.

2 Inference in RSVP KeyboardTM

RSVP KeyboardTM utilizes a visual presentation module to detect the user
intent. The EEG collected during the visual stimulation is then employed in
decision making procedure.

2.1 Visual Presentation

In letter by letter typing task we assume a dictionary set D of 26 letters in
English alphabet, a space symbol “ ” and a backspace symbol “<” as the set
of all possible choices. Our system utilizes both matrix-based and rapid serial
visual presentation paradigms. The different presentation paradigms are shown
in Fig. 1a, b and c. Generally for all matrix-based presentation paradigms the
dictionary members are arranged on a matrix shaped layout on the screen in gray
color. In row and column presentation (RCP) paradigm the elements on each row
or column of the matrix are assumed as a “trial” which are then flashed rapidly
and in a pseudo-random order. One sequence for this presentation paradigm
contains the presentation of all the rows and columns.
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(a) RSVP Paradigm (b) RCP Paradigm

(c) SCP Paradaigm

Fig. 1. Rapid serial visual and matrix-based presentation paradigms

After each sequence the system will attempt to make a decision however if a
predefined confidence threshold is not satisfied the system will capture more EEG
in response to more sequences to improve the decision confidence. Accordingly
the set of sequences which lead to a decision is called an “epoch”. Similarly, a trial
in single character presentation (SCP) paradigm consists of only one element of
dictionary and a sequence is defined as flashes of a subset of dictionary. For RSVP
paradigm there exist no background matrix of characters but all the characters
are presented on a prefixed location of the screen in a pseudo-random order and
rapidly in time. In this presentation scheme each flashing letter is a trial and in
each sequence a subset of dictionary is presented. The definition of epoch is the
same among all presentation paradigms.

2.2 Decision Making

The decision making process in RSVP KeyboardTM utilizes a maximum a pos-
teriori (MAP) inference mechanism. During this procedure the context informa-
tion from a language model (LM) is probabilistically fused with EEG evidence
to produce a more accurate decision. The inference mechanism at epoch k and
after observing sequence l is defined as follows:

ŝ∗
k = arg max

s∈D
P

(
s∗
k = s|E l;C

)
(1)

where s∗
k is a random variable which represents the user intent in epoch k, ŝ∗

k

is the estimated user intent, E l is the EEG evidences for all the observed l
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sequences in epoch k. Assuming that conditioned on the unknown symbol, the
EEG evidence and context information are independent from each other, and
again conditioned on the unknown symbol all EEG evidence from different trials
are independent, we can simplify Eq. (1) as:

ŝ∗
k = arg max

s∈D
P (s∗

k = s|C)
∏

i=1, ..., l
{j | s∈ sij}

p
(
eij |1

)

p
(
eij |0

) (2)

Here in (2), sij is the jth trial of the sequence ith of epoch k and eij represents
the EEG evidence associated with sij .

As in (2), one needs to define P (s∗
k = s|C) and class conditional distributions

p (e|1), p (e|0) to be able to perform an inference.

Context Information. To define P (s∗
k = s|C) we utilize a letter n-gram LM

which provides a prior probability mass function (PMF) over the dictionary. We
have shown that context information fused with EEG evidence improves system
performance effectively [5,6]. An n-gram LM, mimics a Markov model of order
n − 1, trough which it estimates the conditional PMF over the dictionary set
based on n − 1 previously typed letters. Let C = {s∗

m}m=n−1, ..., 1, where s∗
m is

the mth previously typed character, then

P (s|C) = P (s|{s∗
m}m=n−1, ..., 1) =

P (s, s∗
n−1, . . . , s∗

1)
P (s∗

n−1, . . . , s∗
1)

(3)

In our system, we use a 6-gram letter model, which is trained on the NY Times
portion of the English Gigaword corpus [8].

Preprocessing and Feature Extraction. The class conditional distributions
p (e|1), p (e|0) in RSVP KeyboardTM are estimated over the EEG evidences. To
extract the EEG evidence from the EEG time signals, we begin with applying
a two step dimensionality reduction following a preprocessing of recorded EEG.
We use g.USBAmp bio-signal amplifier with the sampling frequency of 256 Hz
to acquire the data. A bandpass linear-phase finite impulse response (FIR) filter
with bandpass of [1.5, 42] Hz is then applied on the EEG data in order to improve
the signal to noise ratio (SNR) and eliminate DC drifts. We down-sample the
preprocessed data by order of 2. We concatenate the data from every channel
in a time window of [0, 500) ms, time locked to onset of ith trial, to form the
feature vector xi for that trial.

The supervised data required for estimating the class conditional distribu-
tions is recorded during “calibration” mode of the system [5]. Each calibration
task of RSVP KeyboardTM consists of 100 sequences. Before each sequence the
user is presented with a target character which she/he is supposed to locate dur-
ing that sequence. For RSVP and SCP paradigms the number of trials in each
sequence is set to 10, and for RCP it is equal to number of all rows and columns
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in the matrix (for instance, here we are using a 4 × 7 matrix which leads to 11
trials in a sequence).

The labels for the feature vectors is assigned as 0 if the trial in a non-target,
or 1 if the trial contains the target character. To increase the EEG ERP detec-
tion accuracy, we further quadratically project the feature vectors on to a space
which maximizes the distance between two classes. In RSVPKeyobardTM we use
regularized discriminant analysis (RDA) which is a generalization of quadratic
discriminant analysis (QDA) to perform this projection. In our system the
dimensionality of feature vectors is relatively higher than the number of obser-
vation during a calibration session, hence we mainly utilize RDA to be able to
estimate invertible covariance matrices. The maximum likelihood class condi-
tional mean and covariance matrices are computed as follows:

µh =
1

Nh

N∑

i=1

xiδ(yi, h)

Σh =
1

Nh

N∑

i=1

(xi − µh)(xi − µh)T δ(yi, h)

(4)

where yi ∈ {0, 1} is the label of xi, h ∈ {0, 1} is the class for which we are
performing the estimation, Nh is the number of observations in class h and
N = N0 + N1. RDA makes the estimated covariance matrices invertible by
applying regularization and shrinkage.

Σ̂h(λ) =
(1 − λ)NhΣh + (λ)

∑1
h=0 NhΣh

(1 − λ)Nh + (λ)
∑1

k=0 Nh

Σ̂h(λ, γ) = (1 − γ)Σ̂h(λ) + (γ)
1
p
tr[Σ̂h(λ)]Ip

(5)

Here, λ, γ ∈ [0, 1] are the shrinkage and regularization parameters, tr[·] is the
trace operator and Ip is an identity matrix of size p×p. RSVP KeyboardTM opti-
mizes the λ and γ for the maximum area under the receiver operating charac-
teristics (ROC) curve (AUC) in a 10-fold cross validation framework. The RDA
score for ei, is then referred to as EEG evidence for trial si.

ei = log

(
fN (xi;µ1, Σ̂1(λ, γ))

fN (xi;µ0, Σ̂0(λ, γ))

)

(6)

where fN (x;µ,Σ) is the Gaussian probability density function with mean µ and
covariance Σ.

Consequently we use these EEG evidences in kernel density estimation (KDE)
framework to define class conditional distributions. In our system we use Silver-
man rule of thumb to define the kernel width for KDE [9].

3 Signal Modeling and Covariance Estimation

Currently in our system we employ RDA to estimate full-ranked class conditional
covariance estimates. But for a non-structured maximum likelihood estimation
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of covariance matrix one needs to estimate many parameters (i.e. elements of
covariance matrix). But due to lack of enough observation in a calibration ses-
sion, this estimation might be prone to errors. We propose to use a Kronecker
product structure for the covariance matrices. This structure reduces the number
of the covariance parameters to be estimated using the assumption of stationar-
ity in time and space. We show that defining an auto-regressive moving average
(ARMA) (p,q) model for the multi-channel EEG recordings leads to Kronecker
product structure under certain assumptions.

Define v[n] as the spatial feature vector of EEG recorded from Nch EEG
channels at time instant n:

v[n] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v1[n]
vj [n]

...

vNch
[n]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Nch×1

(7)

where vi[n] is the nth time sample recorded at channel i. Then define the feature
vectors as:

x[i] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v[1]
v[2]

...

v[Nt]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(NchNt)×1

(8)

where v[.] and accordingly x follows a multivariate Gaussian distribution and
Nt is the number of time samples. We define an ARMA model for EEG signal
as follows:

v[n] =
p∑

k=1

Akv[n − k] +
q∑

j=0

bjw[n − j] (9)

In (9), Ak represents the Nch × Nch signal weight matrix at lag k, bj is
an scalar weight for noise at lag j and w[n] represents multivariate wide sense
stationary Gaussian noise for the nth time sample. Let us assume that the EEG
signals among the channels is stationary. Then one can write (9) as:

v[n] =
p∑

k=1

ck · v[n − k] +
q∑

j=0

bjw[n − j] (10)

in which ck is an scalar weight of time for the signal at time lag k. Now lets
further assume p = 1 and bj = 0 ∀j = 0 . . . q then we can write:

vn = c1 · v[n − 1] (11)
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Then define:

1. Initial state v[0] ∼ NNch
(µv[0],Σv[0, 0])

2. E[v[n]] = µv[n]

3. Σv[m,n] = Cov[v[m],v[n]]
= E[(v[m] − µv[m])(v[n] − µv[n])T ].

4. x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v[1]
v[2]

...

v[Nt]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(NchNt)×1

Here note that based on the above definition we have Σv[m,n] = Σv[n,m]. Also
we have:

v[n] = (c1)n · v[0] ⇒ E[v[n]] = (c1)n · µv[0] (12)

We further assume that the EEG signal is stationary in time. Lets assume m < n
hence we have:

Σv[m,n] = E{v[n]v[m]T } − E{v[n]}E{v[m]}T

= c
(n−m)
1 · (E{v[m]v[m]T } − µv[m]µ

T
v[m])

= c
(n−m)
1 · Σv[m,m]

= c[|n − m|] · Σv[0, 0]

where c[|n − m|] = c
(|n−m|)
1 (13)

According to definition of x one can define the covariance matrix of x as:

Σx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σv[1, 1] . . . Σv[1, Nt]
Σv[2, 1] Σv[2, Nt]

...
...

Σv[Nt, 1] . . . Σv[Nt, Nt]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c[0] . . . c[Nt − 1]
c[1] c[Nt − 2]
...

...

c[Nt − 1] . . . c[0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊗ Σv[0, 0]

(14)

Finally, we assume the EEG signal is independent in time which means that
c[|n − m|] = 0 for all m �= n. Then we have:

Σx = c[0] · INt
⊗ Σv[0, 0] (15)

Here INt
is an Nt × Nt identity matrix.
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Through a maximum likelihood framework we can estimate the parameter
values of the structured covariance matrices. We specifically utilize a flipflop
algorithm presented by Karl Werner in [11] for which we fix the time covariance
matrix to identity and perform a one time estimation on channel covariance
matrix.

4 Results

4.1 Participants

In this manuscript we utilized the calibration data collected from 9 healthy
users who had consented to participate in our study according to the IRB-
approved protocol (IRB130107) [5]. In our study, each user performed 12 cali-
bration sessions for all possible combinations of 4 inter trial interval (ITI) values
({200; 150; 100; 85} ms) and 3 presentation paradigms (RCP, SCP and RSVP).
According to the International 10/20 configuration, data recorded from 16 EEG
locations: Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2,Cp3, Cp4, P5
and P6.

4.2 Data Analysis and Results

We calculated the area under the receiver operating characteristics (ROC) curve
(AUC) values, for every calibration data using a 10-fold cross validation. The
goal of this analysis is to assess the changes in classification accuracy under the
proposed signal model.

For each particular ITI and presentation paradigm (PP) combination, we
compared the median of AUC values for RDA and the proposed model in Table 1,
and also we show the number of participants who demonstrate improvement
under the proposed model in Table 2. In Table 1 we can see an improvement for
RSVP at ITI = 150 ms which is the optimal speed for this presentation para-
digm [5]. Also, the proposed model seems to be most effective in RCP paradigm.
However, we cannot observe any significant improvement for SCP at any ITI.
As shown in Table 2 most of the population could benefit from the proposed
model at every PP and ITI combination. Among all the users at every ITI and
PP combinations, half of the AUC values fall bellow .811. We utilized this value
to define a threshold for high AUCs and low AUCs. The Table 3 represents the
median AUC values for regular RDA and proposed covariance estimation tech-
nique. As one can clearly see in this table the participants with low AUCs can
benefit more from the new signal modeling scheme.

We also compute the number of participants who demonstrate a classification
improvement regardless of particular ITI value and PP. We assumed a partic-
ipant can benefit from this signal modeling scheme if the median of all 12 ITI
and PP combination AUCs improves. The corresponding results are shown in
Table 4.
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Table 1. The median of changes in AUC for each PP and ITI combination among nine
users

RSVP SCP RCP

85 ms 2.867 –1.178 –0.383

100 ms –2.089 0.956 2.156

150 ms 2.000 0.756 1.206

200 ms –2.189 –1.633 3.022

Table 2. The number of participant for whom the proposed model improved the
classification AUC, for each PP and ITI combination and among nine users

RSVP SCP RCP

85 ms 5 6 7

100 ms 5 7 7

150 ms 4 4 6

200 ms 5 4 5

Table 3. Median of AUCs lower than 0.811 for the nine subjects when we use the
signal modeling (SM) versus RDA for all PP and ITIs.

RSVP SCP RCP

Median SM RDA SM RDA SM RDA

85 ms 0.680 0.656 0.705 0.706 0.786 0.776

100 ms 0.722 0.698 0.788 0.754 0.781 0.754

150 ms 0.721 0.736 0.756 0.722 0.777 0.777

200 ms 0.725 0.736 0.790 0.780 0.795 0.786

Table 4. Improvement in median of AUCs among all 12 ITI and PP combination for
each user.

US1 US2 US3 US4 US5 US6 US7 US8 US9

–0.402 1.54 1.269 –0.772 1.111 1.95 –0.181 2.750 –0.108

Table 4 shows that most of the population, 5 out of 9, demonstrate an
improvement in classification AUC. Besides the amount of improvements is gen-
erally higher than 1% while the performance degradation is less than 0.5% for
other users.

5 Discussions and Future Work

In this manuscript, we considered the EEG as a structured multivariate Gaussian
data, and under certain assumptions, we modeled the covariance matrix of this
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signal to have a Kronecker product of a channel covariance matrix and an iden-
tity time covariance matrix. With this assumption on the covariance matrix,
we reduced the number of parameters that are needed to be estimated. Corre-
spondingly this decrease in the number of parameters to be estimated led to an
increase in classification performance.

In this study at every presentation paradigm and inter trial interval combi-
nation, we compared the classification performances of two methods when the
covariance matrix is estimated under the new structure versus the covariance
is estimated without a specific structure using typical RDA. Results suggested
that considering a structured EEG signal can significantly improve the ERP-
detection specially when the RDA AUC is below 80 %. Future work will analyze
and optimize additional structures such as Toeplitz or AR(p) structures for the
covariance of the multichannel EEG signal.
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