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ABSTRACT

Auditory-evoked noninvasive electroencephalography (EEG)
based brain-computer interfaces (BCIs) could be useful for
improved hearing aids in the future. This manuscript investi-
gates the role of frequency and spatial features of audio signal
in EEG activities in an auditory BCI system with the purpose
of detecting the attended auditory source in a cocktail party
setting. A cross correlation based feature between EEG and
speech envelope is shown to be useful to discriminate atten-
tion in the case of two different speakers. Results indicate
that, on average, for speaker and direction (of arrival) of au-
dio signals classification, the presented approach yields 91%
and 86% accuracy, respectively.

Index Terms— Auditory BCI, auditory attention

1. INTRODUCTION

Brain-computer interfaces (BCIs) are proving to be feasible
communication channel for people with severe physical dis-
abilities, such as amyotrophic lateral sclerosis (ALS) or spinal
cord injury. Auditory BCIs have been successful in this do-
main recently. Another emerging application area for audi-
tory BCls is attended speaker identification; in this paper, us-
ing electroencephalography (EEG), we show successful clas-
sification of spatial and frequency features of attended acous-
tic source in a cocktail party setting. EEG has been exten-
sively used in BCI designs due to its high temporal resolution,
noninvasiveness, and portability.

Auditory-evoked P300 BCI spelling system for locked-in
patients is widely studied [1], [2], [3], [4], [5], [6]. Fundamen-
tal frequency, amplitude, pitch and direction of audio stimuli
are distinctive features, which can be processed and distin-
guished by brain. Also, recent studies have shown cortical
entrainment to the temporal envelope of speech using EEG
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measurements [7], [8], [9]. A study on the quality of cortical
entrainment to audio stimulus envelope by topdown cognitive
attention has shown enhancement of obligatory auditory pro-
cessing activity in top-down attention responses when com-
peting auditory stimuli differ in space direction [10] and fre-
quency [11]. An early effect of coherence -115 to 185 ms -
during passive listening and larger and longer effect of coher-
ence - up to 265 ms - during passive listening of stochastic
figureground (SFG) stimulus developed by [12] have been il-
lustrated [13]. Recently, works with successful classification
of attended versus unattended speaker using 60 second [14]
and 20 seconds [15] of data has been published. Even though
these results are still far from requirements to be incorporated
in an online setting for a hearing aid application, they are mo-
tivating for further investigation on this area.

In this paper, we investigate the role of frequency and spa-
tial features of audio sources in selective auditory attention
activation of the brain. Diotic (binaural) stimulus presentation
with different story tellers is an attempt to examine frequency
based attention sensory processing. Dichotic (stimulation of
each ear using different sounds simultaneously) stimulus pre-
sentation tries to explore the effect of spatial direction of stim-
ulus on attention processing of the brain.

2. DATA COLLECTION

2.1. EEG Neurophysiological Data

Four individuals (2 male, 2 female) between ages 25 to 30
years old with no history of serious hearing impairment or
neurological problems participated in this study, which fol-
lowed an approved protocol. EEG signals were recorded us-
ing a g.USBamp biosignal amplifier using active g.Butterfly
electrodes with cap application from g.Tec (Graz, Austria) at
256 Hz. Sixteen EEG channels (F3, F4, T7, T8, C3, C4, CZ,
CPZ, PZ, P1, P2, P3, P4, PZ, O1, O2 and POZ according
to International 10/20 system) were selected to capture au-
ditory related brain activities over the scalp. Signals were
filtered by g.Tecs built-in analog bandpass ([0.5, 60]Hz) and



notch (60Hz) filters.

2.2. Experimental Design

Participants were asked to passively listen to four speech
stimuli sessions through earphones. Each session contained
20 different 60 second trials of two competing speakers with
4 sec rest between each two consecutive trials. Speech stimuli
were selected from audio books of well known novels from
the literature. One male and one female speaker narrated
their stories simultaneously in each trial for all sessions. As
summarized in figure 1, speech stimuli were presented dioti-
cally in the first two sessions such that both speakers narrated
their stories simulataneously to both ears. In the last two
sessions, speech stimuli were presented dichotically such that
different speakers narrated their stories to different ears. In
the first and third sessions participants were asked to attend to
male voice whereas in the second and fourth sessions subjects
were asked to attend the female voice. In the dichotic sessions
target stimulus was randomly played in one of the ears but
subjects were asked to focus on target (male/female) voice
independent of its direction and direction of target was also
shown on the screen using the following direction symbols
“>” “<” to reduce confusion. Amplitude of speech stimulus
signal in each trial scaled to have equal energy for target and
distractors.
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Fig. 1. Experimental paradigm visualization. (a) Diotic audio
presentation and male is target. (b) Diotic audio presentation
and female is target. (c) Dichotic audio presentation and male
is target. (d) Dichotic audio presentaion and female is target.

3. METHODS

3.1. Preprocessing

Acquired EEG signals were digitally filtered by a linear-phase
bandpass filter ([1.5,42]Hz). For each trial, T sec of EEG
signal following each stimulus and time locked to the onset
of each stimulus was extracted.

The acoustic envelope of speech stimulus signals were
calculated using the Hilbert transform and filtered by a low
pass filter (with 20Hz cut-off frequency). Then, 7 seconds of
acoustic envelope signals following every stimulus and time
locked to the stimulus onset were extracted.

Optimizing 7 to get maximum classification accuracy
with minimum time window is an important factor in the
design of online auditory BCI systems. In this paper, we
performed grid search to coarsely optimize 7 as reported in
Section 4.

3.2. Feature Extraction

Since top down attention differentially modulates envelope
tracking neural activity at different time lags [7], [8], [9], us-
ing different time lag values, ty, we calculate the cross corre-
lation (CC) between the extracted EEG signals and target and
distractor acoustic envelopes. Every to = [to,, --- , to,, -
is a vector of time lag values. In our analysis we choose
to, € [t1,t2] seconds. We also investigate the effect of
choosing different time windows as t; values on the BCI
performance in Section 4. For each channel, we calculate the
cross correlations between the EEG and the male and female
speakers’ acoustic envelopes for the time lag values defined
in to. Assuming that £ is an N X 1 vector, we concatenate
the cross correlation values from male and female speakers
into a single vector and hence each feature vector is 2NV x 1
dimensional.

3.3. Classification of Speaker/direction

As explained in Section 2, the participants are asked to di-
rect their auditory attention to a target speaker during data
collection. The other speaker is the distractor. The labeled
data collected in this manner is used in the analysis of dis-
crimination between two speakers or discrimination between
directions in a binary auditory attention classification prob-
lem. Using the 2N X 1 dimensional cross-correlation values
as the feature vectors, we use Regularized Discriminant Anal-
ysis (RDA) as the classifier in our analysis. RDA is a modi-
fication of Quadratic Discriminant Analysis (QDA). QDA as-
sumes that data is generated by two Gaussian distributions
with unknown mean and covariances and requires the estima-
tion of these means and covariances of the target and non-
target classes before the calculation of the likelihood ratio.
However, since, N, the length of ¢, as defined in Section 3.2,
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is usually high and the calibration sessions are short, the co-
variance estimates are rank deficient.

RDA eliminates the singularity of covariance matrices by
introducing shrinkage and regularization steps. Assume each
x; is a 2N x 1-dimensional feature vector and y; is its binary
label showing if the feature belongs to speaker 1 or 2, that
is y; € {1,2}. Then the maximum likelihood estimates of
the class conditional mean and the covariance matrices are
computed as follows:
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where J(-, -) is the Kronecker-¢ function, k represents a pos-
sible class label (here k € {1,2}, and Ny, is the number of
realizations in class k. Accordingly, the shrinkage and regu-
larization of RDA is applied respectively as follows:
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Here, A,y € [0,1] are the shrinkage and regularization pa-
rameters, ¢tr[-] is the trace operator and Iy is an identity ma-
trix of size 2N x 2N. In our system we optimize the values
of A and +y to obtain the maximum area under the receiver op-
erating characteristics (ROC) curve (AUC) in a 8-fold cross
validation framework. Finally, the RDA score for a trial with
the observation vector x;, which is defined as:
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where far(x; i, X) is the Gaussian probability density func-

tion with mean u and covariance X. Here § values are used
to plot the ROC curves and to compute the AUC values.
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4. ANALYSIS AND RESULTS

In the first two analysis below, we chose 7 = 58 sec.

Target / distractor correlation with EEG signal: In Fig-
ures 2 & 3, for one representative participant, we illustrate the
cross correlation values averaged over trials and channels for
diotic and dichotic presentations, respectively. This pattern is
consistent accross different participants.

For diotic presentation, the range with the highest abso-
lute correlation can be identified in the range [50, 350]ms (¥¢
is extracted from this range). In this range, we observe a neg-
ative correlation for both target and distractor speakers fol-
lowed by an early positive correlation for target stimulus and

delayed and suppressed version of that positive correlation for
the distractor stimulus. Table 1 reports the temporal latency
and the magnitude of the peak in cross correlation responses
for every participant.

Correlation Features | Positive Peak Magnitude | Time Lag of Peak (ms)
Stimulus Target Distractor Target Distractor
Participant 1 0.02 0.015 180 215
Participant 2 0.015 0.011 183 207
Participant 3 0.008 0.005 367 191
Participant 4 0.014 0.006 164 320

Table 1. Time latency and magnitude of peak in cross corre-
lation responses for each participant

For dichotic presentation, a more complicated pattern
emerges. A pattern similar to the diotic case is observed for
the correlation of brain responses and target stimuli in both
ears. However, the response to distractor stimulus behaves
differently in right and left ear in general. For two partici-
pants, in the right ear a delayed and suppressed, and in the
left ear earlier and suppressed version of the target cross cor-
relation is observed (see figure 3).
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Fig. 2. Correlation coefficients of target/distractor with en-
velope of speech signal at different time lags which is aver-
aged across trials and channels. Surrounding lines show one
standard deviation above and below the mean.(Diotic stimu-
lus presentation)

Single channel classification analysis: Following the plots
in Figures 2 and 3, we chose the window [50, 350]ms as the
most informative window for classification of target versus
distractor responses (ty vector is formed). We applied the
classifier described in Section 3.3 on the extracted features
for each channel independently to localize the selective atten-
tion responses. Figure 4 shows topographical maps of classi-
fication performance (AUC) for both diotic and dichotic audi-
tory presentations over the scalp, for all participants. For the
diotic presentation, the maximum AUC for a single channel
classification, are as follows: 100% for participant 1, 97% for
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Fig. 3. Correlation coefficients of target/distractor with enve-
lope of speech signal at different time lags which is averaged
across trials and channels. Dashed thin lines show one stan-
dard deviation above and below the mean.(Dichotic stimulus
presentation)

participant 2, 88% for participant 3, 96% for participant 4.
Similarly, the maximum classification accuracies in a single
channel classification scheme for dichotic auditory presenta-
tion are: 91% accuracy for participant 1, 90% for participant
2, 93% for participant 3, 71% for participant 4 for dichotic
stimulus presentation.

Fig. 4. Topographic map of classification performance over
the scalp for classifying attended versus unattended speakers.

For direction classification, we applied the RDA classifier
on samples from only male (or female) speaker and classi-
fied the direction of the incoming voice. Topographical maps
of classification preformance results are summarized in Fig-
ure 5. Considering the channels which provide the best clas-
sification accuracy, we observed 80% for participant 1, 85%
for participant 2, 90% for participant 3, 100% for participant
4 for male speaker and 80% accuracy for participant 1, 75%
for participant 2, 85% for participant 3, 90% for participant 4
for female speaker.
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Fig. 5. Topographic map of classification performance of tar-
get speaker direction.

Evaluation of trial length for classification performance:
The goal of this analysis is to choose the best 7, the length of
EEG data to be extracted for use in cross correlation. We re-
port the classification accuracies for speaker sound frequency
(male/female) discrimination in diotic and speaker sound di-
rection in dichotic sessions in Figures 6 and 7, respectively. In
these figures, there is one curve for each participant and these
plots show the classification performance at channel Cz as a
function of 7. In this analysis, we proposed to use Cz since on
average it was producing the best performance among users.
To generate these figures we increased 7 by two seconds at
every step. In these two figures, we observe an average in-
cremental pattern in the classification accuracies for both di-
chotic and diotic sessions as 7 is increasing. The inconsis-
tency for longer durations might be due to silent periods or
user attention drifts.
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Fig. 6. Speaker frequency based classification performance
using different 7 values for diotic stimulus presentation at
channel Cz.
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Fig. 7. Speaker direction based classification performance
using different 7 values for dichotic stimulus presentation at
channel Cz.

5. CONCLUSION

In this paper, we presented results from a preliminary attempt
to investigate the feasibility of online classification of audi-
tory attention using a noninvasive EEG-based brain interface.
Analyzing experimental data from four participants offline to
evaluate the effect of spatial and frequency characteristic of
audio stimuli, we identified informative data length and cross-
correlation time lags for feature extraction.

Classification accuracies for attended speaker, obtained
using regularized discriminant analysis of extracted EEG fea-
tures, ranged around 95% and 86% for speaker discrimination
in diotic and dichotic cases, respectively. For the direction
identification, in average we observed 89% and 82% accura-
cies for identification of male and female voice directions, re-
spectively. In our future work, using data from a larger group
of participants, we will pursue a real-time implementation of
a brain interface that can track attended speaker and direction.
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