
 ​PENN​S​TATE
Department of Computer Science

PSU RERC on AAC 3: Active Listening Chatbot
Final Report

May 1, 2017

Michael Judge
Vishnupriya Bakthisaran

Daniel Levine

No Intellectual Property Rights Agreement Applies
No Non-Disclosure Agreement Applies

1

Executive Summary

Parents play a critical role in the development of communication skills in their child who uses Augmentative
and Alternative communication (AAC); however, they frequently report their frustration with their relationships with
communication professionals (McNaughton 2015). Active listening skills greatly bridge the gap between the family of
the child using AAC and the professional, providing better outcomes. Thus, teaching active listening skills to pre-service
SLPs is an important component of their learning program. Role playing is an important activity in an active listening
program. In role play, one participant will play the role of the SLP and the other participant will play the role of the
parent of the child using AAC. This project will examine the development of a chatbot to play out the various scenarios
that are typically used during role-play in an Active Listening program. This chatbot will be used to determine the
usefulness of chatbot technology in the context of an active listening program for pre-service SLPs in future studies. The
two main objectives of the project were the creation of an administrator and user site. The administrator site has an
interface enabling the admin to add scenarios for the bot to learn and then role-play with users. A scenario contains
information such as the name of the person, description, and example responses for the bot to use. This scenario object
gives the bot a personality. The user site supports interaction with a chat widget, and detailed score reports for completed
conversations. A user can chat with any of the bots playing out the scenarios in the database. The site is supported with
the Flask, and MongoDB python modules. The bot is a retrieval-based agent that uses a Naive Bayes classifier to
converse with the user. We have met the need of building a system that supports a user and administrator site. Future
work could improve upon the classifier, and improve the aesthetics of the website.

2

Table of Contents

1.0 Introduction………………………………………………………………………....……....... 4
 1.1 Problem Statement
 1.2 Objectives
2.0 Project Management………………………………………………………………………….. 5
 2.1 Communication and Coordination with Sponsor
 2.2 Project Timelines
 2.3 Deliverables
 2.4 Budget
3.0 Detailed Design………………………………………………………………………………. 6
 3.1 Component and Component Selection Process
 3.2 Object Oriented Design
 3.3 GUI Design
 3.4 Database Design
 3.5 Use Case Definitions
 3.6 Interface Design
 3.7 Test Procedure
4.0 Final Discussion…………………………………………………………………………….... 11
 4.1 Construction Process
 4.2 Test Results and Discussion
5.0 Conclusions and Recommendations………………………………………………………….. 12
References…………………………………………………………………………………………. 13
Appendix…………………………………………………………………………………………... 14

3

1.0 Introduction
Parents play a critical role in the development of communication skills in their child who uses Augmentative

and Alternative communication (AAC); however, they frequently report their frustration with their relationships with
communication professionals. A recent study examined the effect of instruction in an active listening strategy on the
communication skills of pre-service Speech-Language Pathologists (SLPs). Participants and parents of children who use
AAC described their post-instruction interactions more positively than the pre-instruction interactions (McNaughton
2015). This indicates that active listening is an important skill for SLPs to learn in order to effectively communicate with
parents of children who use AAC.

Role playing is an important activity in programs used to teach active listening skills. In role play, one
participant will play the role of the pre-service professional and the other participant will play the role of the parent of
the child with a disability. The participant playing the role of the parent needs to learn and/or use a script in order to
converse with the pre-service professional. This project will examine the development of a chatbot to play the role of the
parent of a child with a disability.

1.1 Problem Statement

Professionals who work with families need to demonstrate strong communication skills. An important skill that
can be used to communicate effectively is active listening. These skills can be practiced in role plays, but it would be
useful to determine the effectiveness of chatbot technology used in an active listening program. A chatbot would
eliminate the time needed for a student to learn a script to converse with a partner. Ideally the Chatbot could handle a 3-5
minute conversation in which a parent has a concern, and the teacher practices (1) greeting the parent, (2) asking
questions to find out more about the concern (3) summarizing the parent's concern (4) suggesting a first step
(McNaughton).

1.2 Objectives

The chatbot will be a retrieval-based agent rather than a generative-based agent. This means, that it will be able
to respond to what the user is asking with the most likely response in its knowledge base, but will not make up responses
on its own. Thus, the responses must be pre-scripted. The bot must retrieve the correct response to user queries with high
likelihood while also letting the user know when it is not sure what they are asking. The chatbot will make its decisions
on what to say by using machine learning and natural language processing techniques. The system must support a
database in order to allow the admin to add multiple scenarios that the bot can enact. Administrative use must be simple
and therefore must not include any programming. The aim of this project is to have developed an administrative and user
website. The administrative site will allow the admin to add/edit/remove scenarios that the bot can enact. These
scenarios will contain example dialog, name of the person that the bot will be, and a brief description of the scenario to
be displayed to the user. The user site will display a chat interface that the user will use to interact with the bot. Useful
information such as a picture of the person they are interacting with, and a brief description of the scenario will be
displayed as well. Lastly, the project must be well documented using good coding practices to ensure that the project can
be improved upon in the future.

4

2.0 Project Management

2.1 Communication and Coordination with Sponsor

For this project, we had weekly meetings with our sponsor to ensure that communication of the requirements,
and implementation was smooth. We also agreed to streamline our project process documentation by using the Trello
platform. In our first meeting with our sponsor we came to a common agreement to use Agile-oriented productivity
techniques such as scrum to accommodate flexibility of the project requirements. Our sponsor desires the end product to
be scalable, so that it is flexible to changes in requirements. Hence, we decided to adopt the Agile methodology as our
project implementation method to ensure that the end product is scalable and can evolve to fit future requirements.

2.2 Project Timeline

January 19th: ​we met with our sponsor for the first time and discussed future visions for the project. Discussed
the real world application and got more information on the context for our chatbot. We began looking into background
readings and considered various approaches.

January 26th: Established weekly meeting times with our sponsor. Completed base background readings and
began to investigate the tools used in previously implemented chatbots.

February 2nd: Finished the background readings covering existing research on chatbot technologies.
Researched the difference between deep learning and database chatbot technologies. Began work on various prototype
chatbots.

February 9th: We have a base Naive Bayes program running that we were able to show the sponsor. We have
decided to continue with this approach for the remainder of the project. More concrete goals, such as expectations for
interactions and hosting issues, have been created.

February 16th: Started investigation of how to connect the system with Moodle. Developed a clear scope for
the project.

February 23rd: Chatbot prototype has basic prompts. Currently works with one scenario. Moodle account
access created in order to test the moodle integration when the project gets to this stage.

March 16th: ​Divided work between group members. Deciding upon Moodle integration with application. The
layout of the project poster is being planned out.

March 23rd: ​Vishnu is working on putting the poster together. Dan is working on the front end. Mike is
working on the backend. We are working on preparing a pilot for April 21-24.

April 6th: Worked on mockup admin front end. Database is setup. We are using MongoDB. Admin login page
finished. Backend finished.

April 13th: ​Worked on linking backend and frontend. Compiled a list of dependencies for the project.
April 20th: ​Application is fully linked and fully functional. User interface is polished off. Preparing to install

code on web server.
April 27th: ​In process of installing on web server. Poster presentation complete.

2.3 Deliverables
At the conclusion of the project, the aim is to have produced an administrative and a user site. The

administrative site will make the process of adding/editing/removing Scenario objects to the knowledge base simple. The
user site will allow users to communicate with the chatbot acting out various scenarios.

2.4 Budget

This project did not require the purchase of any materials.

5

3.0 Detailed Design

3.1 Component and Component Selection Process

For this project we chose a variety of components. The selection for these components was based on which tool was
best suited for our needs. First off we decided to write the backend in python. Python is a very flexible and easy to use
programming language with rich libraries. Whomever wants to pick up this project in the future should have an easy time
getting up to speed with the coding. For the web server we used the Flask framework. Flask is a python module that
enabled us to link the server code with the html and css files used to design the website. We needed to decide upon a
database for the project. We came to the conclusion that MongoDB would be the best option as it integrates with our
project the best. Lastly, we decided to write our own classifier rather than using services such as Watson or Wit.ai
because neither offered the integration we needed for this project. Both had a bit of a learning curve to use, and if the
service is discontinued then so is the project as all data would live on their servers.

3.2 Object Oriented Design

The project must be able to support multiple scenarios that the bot can roleplay. Scenarios contain information about
a given conversation that a professional might have with a family. This information includes the name of the person the
professional would speak to, a description of the person, and a Dialog object for example. The Dialog object contains a
list of Response_Node objects, and can perform useful operations on this list. Response_Node objects contain a response
that the bot can say, and a list of questions that yield this response. The questions are utilized in the Naive Bayes
classifier. The list of Response_Node contained in neighbors are responses that are likely to come after this response.
This list is used in the classifier to enable basic context aware conversations. Points are awarded for a user evoking this
response in a conversation. A Bot object uses a Scenario and a smoothing constant to form its knowledge base. The
Bot_Manager contains a dictionary that maps a scenario_id to a Bot. This class is used to avoid having to create a new
bot every time a user initiates a chat with a particular Scenario. The Scenario_DB contains useful operations to interact
with the database. The UML diagrams are displayed below.

Response_Node

-response: String
-questions: List of Strings
-neighbors: List of Response_Node
-points: Int

+Response_Node(String, List, List, Int)
+getters and setters
+add_question(String) : void
+remove_question(Int) : void
+set_question(Int, String): void
+get_question(Int): String
+add_neighbor(Response_Node) : void
+remove_neighbor(Int) : void
+get_neighbor(Int): Response_Node
+set_neighbor(Int, Response_Node): void

Dialog

-responses: List of Response_Node
-total_points: sum of points in responses

+Dialog(List)
+getters and setters
+set_total_points(): void
+add_response(Response_Node) : void
+remove_response(Int) : void
+get_response(Int) : Response_Node
+set_response(Int, Response_Node): void
+get_length(): Int

6

Scenario

-name: String
-description: String
-image: String
-dialog: Dialog
-video_link: String

+Scenario(String, String, String, Dialog, String)
+getters and setters

Bot

-kb: list
-transition_prob: dictionary

+Bot(Scenario, Float)
+reply(Int, String) : List

Bot_Manager

-bot_map: dictionary

+Bot_Manager()
+get_bot(String) : Bot
+load_bots() : void

Scenario_DB

+Scenario_DB()
+get_scenarios() : List
+add_scenario(Scenario) : String
+update_scenario(String, Scenario) : boolean
+delete_scenario(String) : boolean
+get_scenario(String) : Scenario
+wipe_db() : void
+export_raw() : List
+import_raw(List) : void

3.3 GUI Design
On the user facing site, we have developed a page that display a typical chat widget along with useful information

about the person that the bot is role playing. When a user is finished with the chat, they can click the end chat button.
Clicking this will take them to a results page which summarizes the conversation with a final score report. There is a
button on this page that when clicked will download the report as a pdf.

We also developed an administrator site. First, if the administrator isn’t logged in they will be greeted with a login
page where they will need to provide a correct username and password to get into the admin homepage. The
administrator homepage provides a variety of options for the admin to use to modify the database. If they click the New
Scenario button or click on one of the links next to an already created Scenario, they will be taken to the edit Scenario
page. On this page the admin can edit all of the fields that belong to a Scenario object. They can use the dropdown menu
to select a response in the Dialog object contained in the Scenario. Selecting a Response will redirect the admin to the
edit Response page. Here, the admin can edit all of the fields in a Response_Node object. Any additions/edits/deletions
performed on the previous mentioned admin pages are immediately reflected in the database. Screenshots are displayed
below.

7

8

3.4 Database Design
This project utilizes MongoDB to store the Scenario objects. MongoDB is a document-oriented database. Scenario

objects are stored in the database by serializing all the fields in a Scenario object, and the objects it contains into a
dictionary. When the dictionary is added to the database, a unique id is added to the dictionary. This scenario id is used
throughout the system to access the Scenario to edit it or remove it. The Scenario_DB class contains all of the methods to
support the serialization and deserialization operations. The client using a Scenario_DB object only needs to provide a
scenario_id and they will be given a Scenario.

3.5 Use Case Definitions

There are two main inputs that can come into the system. These are the user input, and the administrator input. All
website interaction is handled through the Flask module. Each website entry point has its own function defined in
app.py. The input to these functions are parameterized in the site URL. The functions handle the input and return an html
view to the web browser.

9

In the user input case, user input comes into the system in the form of a question string. After the user clicks submit,
the server retrieves the input from the text box on the page. The server uses the site address to retrieve the scenario_id.
The scenario_id is used to get the Bot that plays the Scenario from the Bot_Manager. Next the user input, and the
previous response id (which is stored on a user session variable) are passed to the Bot object. The Bot object calculates
and sends a list of the most likely responses from greatest to least along with corresponding response ids for each. The
system updates the session variables for this user, and lastly refreshes the page with the most likely response appended to
the conversation dialog.

In the administrator case, the admin has the ability to add/edit/remove scenarios. The Flask module directs all admin
actions on the website to their respective functions defined in app.py. Depending on the action, the system may need to
retrieve/add/edit/delete Scenarios in the database. The Scenario_DB object supports all the actions mentioned. The
admin website is updated to display all information that is currently contained in the database.

3.6 Interface Design

Below is a table describing the interface of the project. The services above rely on the services below them.

User/Admin Website (HTML and CSS)

Flask Module

app.py (URL endpoints get routed here by Flask)

Bot_Manager

Scenario_DB

Bot

Scenario

Dialog

Response_Node

3.7 Test Procedure

Mostly this project was tested through unit-testing. As we developed the program, we tested a variety of inputs,
and states that the system can enter for correctness and speed. Our sponsor tested our website by using it in our meetings
and we adjusted the site interface and functionality based on his input. A user friendly interface was a priority for this
project. We did not get the chance to test out the website on a large scale, but we hope to have the website hosted on the
server by the end of finals week. The next group that works on this project will need to perform load testing amongst
others when the website goes live.

10

4.0 Final Discussion

4.1 Construction Process

This project is hosted on github at ​https://github.com/MikeJudge/Chatbot​. Running the program is as simple as
cloning the repository and installing the required dependencies. It is advised that you download these libraries in the
following order in order to not run into any errors:

● flask
● nltk
● pymongo
● cffi
● cairocffi
● flask_weasyprint

Then, run the main source file “app.py” and it will run the application on your system. For more details on the
installation procedure consult the github page linked above.

4.2 Test Results and Discussion

We unfortunately did not have enough time to run a pilot with a group of students to test our program. We did
however have weekly meetings with our sponsor whom was satisfied with where we took the project this semester.
Every major function that was required was implemented along with some useful ones we came up with such as the
import and export database function for example. The system runs well on our own machines. We hope to have the
service available on a Penn State server owned by our sponsor by the end of finals week. At this time there are no
observable bugs in our code. One area that could use improvement is the interface. It could probably look better. It’s
intuitive, but not the greatest looking website to use. This is definitely an area for the next group to explore. Overall we
are happy with where we took the project. We started from nothing, and got this project to a point where the major
components are wired up and fully functional. Improvements can be made, but the overall layout of the system will more
than likely remain the same. The modularity and readability of the code will ensure that future groups will be able to
understand the work we performed quickly. For more details on the work that was performed go to section 3. In the
future our sponsor plans to test the application on students that plan on becoming pre-service professionals. As a
professor he will have a good testing size of students to make sure the application works correctly.

11

https://github.com/MikeJudge/Chatbot

5.0 Conclusions and Recommendations
At the start of this project, the problem was very broad. We were assigned to develop a chatbot to train

pre-service professionals in the context of an Active Listening program. Active Listening programs involve role-playing
as a component of the instruction. These role-plays typically last 3-5 minutes, and the partner playing the role of the
patient uses a script to answer questions. With this information the obvious choice was to develop a retrieval-based agent
rather than a generative-based agent. As data for these kinds of conversations is limited we decided to use a Naive Bayes
classifier as the retrieval algorithm as it can still perform well given a limited amount of data. Our sponsor liked the idea
and the accuracy of its responses in our early terminal program, so we kept with this classifier. We explored other
services already created on the market such as Watson and Wit.ai, but none of them offered the fine grained control and
ease of use that our sponsor desired. In a typical Active Listening program there are many different role-plays that the
students practice. Thus our system needed to support multiple scenarios with each chatbot using a classifier specific to a
given scenario. A large portion of the development time went into developing an interface to enable an administrator to
add/edit/remove scenarios. To support this we needed a database system and a module to support a web server. For the
database portion we picked MongoDB. We use Flask for the web server. Both of these modules have excellent APIs and
were easy to pick up. They perform their needed functions well. Once we developed a website and linked up the backend
and fronted, we had our sponsor test it. Our sponsor was happy with the ease of use, and all of the functionality that our
system offered. There were improvements that were asked to be made such as the naming of the fields and functions
displayed to the admin. Also some adjustments to the score results page of the user site needed to be made. Adding a
picture and Youtube video to the chat site was a request as well. In the last stretch of the semester we implemented all of
the above mentioned tasks, and ironed out all bugs we ran into.

Overall we were all happy with how the project turned out. In the appendix there is a self assessment of the
project. We met our sponsor’s initial need of the chatbot. We also implemented an easy to use website to enable the
chatbot to play out an infinite number of different scenarios. The code is documented well, modular, and easy to read. It
was a lot of work, but we all learned a lot from the project. There are always improvements that can be made to any
system, but here are a few that we think would be good places to start. Improvements to the classifier. The classifier
could be improved with more sophisticated preprocessing and tokenization methods. Also using a two level classifier
could improve performance as well. The first classification would classify the input into a section of a conversation
(greeting, body, conclusion), and the second layer would work as currently implemented on the subset of responses in
the narrowed down class. The interface could also be improved upon. A more modern design could be used to improve
the look and feel of the administrator site.

12

References

 ​Chatbot. Digital image. N.p., n.d. Web. 15 Feb. 2017.
<​https://onlinelearninginsights.files.wordpress.com/2016/06/chatbot_dm.jpg​>.

 McNaughton, D., Thistle, J. (2015). Teaching Active Listening Skills to Pre-Service Speech-Language Pathologists:
A First Step in Supporting Collaboration With Parents of Young Children Who Require AAC. ​Language, Speech, and
Hearing Services in Schools, 46​, 44-​55.

13

https://onlinelearninginsights.files.wordpress.com/2016/06/chatbot_dm.jpg

Appendix

Meeting the Sponsor’s Needs: 9

We were one week short of getting the system launched on the server. We may or may not get it running this
last week of class. Other than this small shortcoming, we completed everything else our sponsor asked of us. Our
sponsor is very impressed with our work and is excited about where this project will go in the future.

Global and Societal Needs: 10

This project will be used by our sponsor in his own research. The research will test the effectiveness of using a
chatbot in an Active Listening program. The hope is that our chatbot will improve the outcomes of these Active
Listening programs. Active Listening is a very important skills for professionals to learn to improve the outcomes of
people with disabilities. The completion of this project is a very important step needed to complete this study.

14

15

16

17

